͵͵

Essay

How do Candida auris and other fungi develop drug resistance?

A microbiologist explains
Jeffrey Gardner
By Jeffrey Gardner
May 7, 2023

One of the scariest things you can be told when at a doctor’s office is “You have an antimicrobial-resistant infection.” That means the bacteria or fungus making you sick can’t be easily killed with common antibiotics or antifungals, making treatment more challenging. You might have to take a combination of drugs for weeks to overcome the infection, which could result in more severe side effects.

Unfortunately, this diagnosis is .

The yeast has recently emerged as a potentially dangerous fungal infection for hospital patients and nursing home residents. First , Candida auris has very quickly become a due to its ease of spread and ability to resist common antifungal drugs.

How did this fungus become so strong, and what can researchers and physicians do to combat it?

researching new ways to kill fungi. Candida auris and other fungi use three common cellular tricks to overcome treatments. Luckily, exciting new research hints at ways we can still fight this fungus.

Drug-resistant Candida auris infections are on the rise in the U.S. and around the world.

Targeting the sensitive parts of fungal cells

Fungal cells contain a structure called a that helps maintain their shape and protects them from the environment. Fungal cell walls are constructed in part from several different types of polysaccharides, which are long strings of sugar molecules linked together.

Two polysaccharides found in almost all fungal cell walls are and . The fungal cell wall is an attractive target for drugs because human cells do not have a cell wall, so drugs that block chitin and beta-glucan production will have fewer side effects.

Some of the most common drugs used to treat fungal infections are called . These drugs stop fungal cells from making beta-glucan, which significantly weakens their cell wall. This means the fungal cell can’t maintain its shape well. While the fungus is struggling to grow or is breaking apart, your immune system has a much better chance of fighting off the infection.

How fungi become drug resistant

Unfortunately, some strains of Candida auris are resistant to echinocandin treatment. But how does the fungus actually do it? For decades, scientists have been studying how fungi overcome drugs designed to weaken or kill them. In the case of echinocandins, Candida auris commonly uses three tricks to beat these treatments: , and .

The first trick is to hide in a complex mixture of sugars, proteins, DNA and cells . Made with irregular 3D structures, biofilms have lots of places for cells to hide. Drugs aren’t good at penetrating biofilms, so they can’t access and kill cells deep inside. Biofilms are especially problematic when they like ventilators or catheters. Once free of a biofilm, cells that have gained the ability to resist the drugs a patient was taking become more dangerous.

This image shows Candida albicans (red) producing branching filaments that allow it to attach to Candida glabrata (green), forming biofilms. Both of these species can cause infections in people.
,
This image shows Candida albicans (red) producing branching filaments that allow it to attach to Candida glabrata (green), forming biofilms. Both of these species can cause infections in people.

The second trick fungi use to evade treatment is to build cell walls differently. Fungal cells treated with echinocandins can’t make beta-glucan. So instead, they start to , another important polysaccharide in the fungal cell wall. Echinocandins are unable to stop chitin production, so the fungus is still able to build a strong cell wall and avoid being killed. While there are some drugs that can , none are currently approved for use in people.

The third trick fungi rely on is to so echinocandins cannot block it. These mutations allow beta-glucan production to continue even in the presence of the drug. It is not surprising that Candida uses this trick to resist antifungal drugs since it is at keeping the cells alive.

New tactics to fight fungi

What can be done to treat echinocandin-resistant fungal infections? Thankfully, scientists and physicians are researching new ways to kill Candida auris and similar fungi.

The first approach is to find new drugs. For example, there are two drugs in development, and , that appear to be able to stop beta-glucan production even in fungi resistant to echinocandins.

A complementary approach my research group is exploring is whether a class of enzymes called might also be able to combat drug-resistant fungi. Some of these enzymes actively destroy the fungal cell wall, breaking apart both beta-glucan and chitin at the same time, which could potentially help prevent fungi from surviving on medical equipment or on hospital surfaces.

My lab’s work on discovering enzymes that strongly degrade fungal cell walls is part of a new strategy to combat antifungal resistance that uses a combination of approaches to kill fungi. But the end goal of this research is the same: having a physician tell you, “You’ve got a fungal infection, but we have a good treatment for it now.”

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jeffrey Gardner
Jeffrey Gardner

Jeffrey Gardner is an associate professor of biological sciences at the University of Maryland, Baltimore County.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

Black excellence in biotech: Shaping the future of an industry
Observance

Black excellence in biotech: Shaping the future of an industry

Feb. 28, 2025

This Black History Month, we highlight the impact of DEI initiatives, trailblazing scientists and industry leaders working to create a more inclusive and scientific community. Discover how you can be part of the movement.

Attend ASBMB’s career and education fair
ASBMB Annual Meeting

Attend ASBMB’s career and education fair

Feb. 24, 2025

Attending the ASBMB career and education fair is a great way to explore new opportunities, make valuable connections and gain insights into potential career paths.

Benefits of attending a large scientific conference
ASBMB Annual Meeting

Benefits of attending a large scientific conference

Feb. 13, 2025

Researchers have a lot of choices when it comes to conferences and symposia. A large conference like the ASBMB Annual Meeting offers myriad opportunities, such as poster sessions, top research talks, social events, workshops, vendor booths and more.

When Batman meets Poison Ivy
Science Communication

When Batman meets Poison Ivy

Feb. 13, 2025

Jessica Desamero had learned to love science communication by the time she was challenged to explain the role of DNA secondary structure in halting cancer cell growth to an 8th-grade level audience.

The monopoly defined: Who holds the power of science communication?
Essay

The monopoly defined: Who holds the power of science communication?

Feb. 12, 2025

“At the official competition, out of 12 presenters, only two were from R2 institutions, and the other 10 were from R1 institutions. And just two had distinguishable non-American accents.”

How I made the most of my time as an undergrad
Essay

How I made the most of my time as an undergrad

Jan. 30, 2025

An assistant professor of biology looks back at the many ways he prepared (or didn’t) for his future when he was in college.