Breaker ‘vastly expanded
our appreciation of the versatility
of noncoding RNAs in biology’
of the Howard Hughes Medical Institute and Yale University, has won the . The award recognizes outstanding contributions to research in biochemistry and molecular biology.
Breaker has done pivotal work establishing the importance of ligand-binding RNAs in biology. He discovered and characterized more than 30 natural allosteric RNAs, called riboswitches, and showed that they demonstrate complex behavior, melding cooperative binding, dual ligand binding and intrinsic catalytic activity. In addition, he engineered the first examples of RNA switches and enzymes made of DNA. His group’s development of key bioinformatics tools also paved the way for the discovery of numerous functional noncoding RNAs that are essential for bacterial survival.
In his letter nominating Breaker for the award, at Yale recounted Breaker’s many discoveries, including riboswitches. “Breaker and his co-workers independently discovered and studied 24 of the 25 classes of metabolite-binding riboswitches reported to date,” Pollard said. Riboswitches are regulatory segments of a messenger RNA molecule that have the ability to bind a small molecule, thereby changing the expression of the protein encoded by the mRNA.
As a result of selective binding to small molecules like co-enzymes, amino acids and ions, riboswitches control the expression of many key metabolic genes in all types of organisms.
Breaker and his group not only discovered riboswitches but identified that they are structurally complex and can function as cooperative or tandem “digital” switches, co-factor-mediated ribozymes and allosteric ribozymes. In addition, most riboswitches operate in the absence of proteins and as a result played a role in how our early ancestors were able to regulate complex biological processes prior to the evolution of proteins.
Before the discovery of riboswitches, the Breaker group used directed evolution to create the first examples of engineered RNA switches and catalytic DNAs. As a result of his work, a field of RNA switch engineering has emerged, and the switches now are used as biosensors and as designer gene control elements in synthetic biology experiments. Their creation of the first catalytic DNAs led to the discovery that enzymes made of DNA or RNA can exploit cofactors to increase their catalytic power just like protein enzymes. This work validated DNA as the third natural polymer with enzymatic activity.
Breaker’s work has established that riboswitches are in bacterial pathogens and can serve as antibacterial drug targets. His work also has established theoretical speed limits for various catalytic strategies by proteins, RNAs and DNAs. According to Pollard, “These studies using biochemical and molecular biological methods by Ron Breaker and his colleagues vastly expanded our appreciation of the versatility of noncoding RNAs in biology.”
Breaker has a bachelor’s degree in biology with a chemistry minor from the University of Wisconsin, Stevens Point, and a Ph.D. in biochemistry from Purdue University. He is a Howard Hughes Medical Institute investigator, and his honors include election to the National Academy of Sciences and the Eli Lilly Award from the American Society of Microbiology. He holds several patents for his discovery of riboswitches and methods for their use as well as nucleic acid catalysts.
Watch Breaker’s award lecture, “Prospects for noncoding RNA discovery in bacteria,” below.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles
Transforming learning through innovation and collaboration
Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Guiding grocery carts to shape healthy habits
Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Leading the charge for gender equity
Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.
Honors for de la Fuente, Mittag and De La Cruz
César de la Fuente receives the American Society of Microbiology’s Award for Early Career Basic Research. Tanja Mittag and Enrique M. De La Cruz are named fellows by the Biophysical Society.
In memoriam: Horst Schulz
He was a professor emeritus at City College of New York and at the CUNY Graduate Center in Manhattan whose work concentrated on increasing our understanding of mitochondrial fatty acid metabolism and an ASBMB member since 1971.
Computational and biophysical approaches to disordered proteins
Rohit Pappu will receive the 2025 DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, April 12-15 in Chicago.