͵͵

Award

Farese and Walther find depth in a droplet

They have won the 2022 ASBMB–Merck Award
Renae   Crossing
Dec. 15, 2021

“Tobi was a very rare type of person. … When you do a sabbatical many people in the lab ignore you, but Tobi ... without hesitation, said, ‘I’ll help you. Let’s go.’”

Robert Farese Jr.

In this way, Tobias Walther’s simple question (“What are you working on?”) to Robert Farese Jr. started a long-term collaboration that has become the forefront research group in a new field of biology: how and why our cells make little droplets, called lipid droplets, and why that matters.

In the early 1990s, Farese had been studying enzymes that make oils. In his science, , Farese looks deeply at everyday things others pass over. Lipid droplets had been observed under microscopes since the 1800s, but Farese said, “When I went to the textbooks and tried to learn about them as organelles, I couldn’t find anything.”

Tobias Walther

Farese and Walther converged from complementary paths: one a U.S. lipid biologist with an M.D., the other a German chemist and biochemist who was a postdoc at the time. Additionally pooling structural biology, biophysics, proteomics, enzymology and physiology, over time they created excellent science.

“We stand on the shoulders of some amazing scientists,” Walther said, “but they didn’t have the tools that we have.”

For what they’ve done with these tools, Walther and Farese, now running a joint lab at Harvard University and both associate members of the Broad Institute, have won the 2022 ͵͵ and ͵͵ Biology’s ASBMB–Merck Award.

Droplets by nature are isolated, but good science isn’t. For Walther, “It’s about the work and not (the two of us) … many people in our lab have contributed.” Farese attributes asking good questions to their “constant creative dialogue … ping ponging” ideas for experiments. Both buck egomania in science, appreciating a congratulatory note from mentors over a press release.

Feedback on the science itself, says Walther, is what shows “we’re on the right track.” That track increasingly has shown that there’s depth in a droplet, and there’s yet more to be found.

Two make one

Two enzymes inside us, DGAT1 and DGAT2, like Tobias Walther and Robert Farese Jr., converge with their distinct pathways to work on a common process: encasing energy-rich molecules safely in lipid droplets. (And one of them is ) Lipids left alone to accumulate can be toxic, so it’s safer to bundle them together.

Inside lipid droplets are fats, or triacylglycerides: esters of fatty acids and glycerol. Their presence makes cells an emulsion, Farese explains, and while we know in terms of physics how emulsions form, in biochemistry, questions arise about “how nature evolved proteins and lipids to govern that process in a regulated way.”

Knowing how fats are metabolized has consequences: mutated versions of DGAT1 cause congenital diarrhea syndrome, and physicians may soon block DGAT2 to treat nonalcoholic fatty liver disease; the latter is in clinical trials. Overactive versions of DGAT enzymes will have plants and microbes producing oils for food or fuel for us.

And regarding obesity and conditions where people are underweight, Walther wants people to know, “We’re making a lot of progress, and there’s a lot of hope.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Renae   Crossing

Renae Crossing is a writer and former teacher. She holds a first-class master’s degree in life science from the Hong Kong University of Science and Technology and a first-class master’s in teaching from the University of Melbourne.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

Honors for de la Fuente, Mittag and De La Cruz
Member News

Honors for de la Fuente, Mittag and De La Cruz

Nov. 18, 2024

César de la Fuente receives the American Society of Microbiology’s Award for Early Career Basic Research. Tanja Mittag and Enrique M. De La Cruz are named fellows by the Biophysical Society.

In memoriam: Horst Schulz
In Memoriam

In memoriam: Horst Schulz

Nov. 18, 2024

He was a professor emeritus at City College of New York and at the CUNY Graduate Center in Manhattan whose work concentrated on increasing our understanding of mitochondrial fatty acid metabolism and an ASBMB member since 1971.

Computational and biophysical approaches to disordered proteins
Award

Computational and biophysical approaches to disordered proteins

Nov. 14, 2024

Rohit Pappu will receive the 2025 DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, April 12-15 in Chicago.

Join the pioneers of ferroptosis at cell death conference
In-person Conference

Join the pioneers of ferroptosis at cell death conference

Nov. 13, 2024

Meet Brent Stockwell, Xuejun Jiang and Jin Ye — the co-chairs of the ASBMB’s 2025 meeting on metabolic cross talk and biochemical homeostasis research.