͵͵

Journal News

How a fish pathogen outwits antibiotic stress

Sneha Das
Jan. 3, 2023

Antibiotic resistance occurs when medications for prevention and treatment of bacterial infections in humans and other animals no longer work. Xiangmin Lin’s research group at the in China has worked on bacterial antibiotic resistance for many years, and their on the discovery of this novel mechanism was published in the journal ͵͵ & Cellular Proteomics.

Aeromonas hydrophila colonies growing on the blood agar. Colonies shown with reflected light.
/Wikimedia Commons
Aeromonas hydrophila colonies growing on the blood agar. Colonies shown with reflected light.

More than 2.8 million antibiotic-resistant infections result in over 35,000 deaths each year in the U.S. alone, according to a Centers for Disease Control and Prevention , and these numbers are much higher globally. If nothing changes, 10 million people will die from drug-resistant infections every year worldwide, , by 2050.

Lishan Zhang, a Ph.D. student in Lin’s lab and first author of the MCP paper, said antibiotic resistance is a serious public health problem, and drug-resistant bacteria are found in settings ranging from hospitals to livestock breeding centers and aquaculture.

Fisheries around the world due to antibiotic-resistant bacterial pathogens such as A. hydrophila, which is fatal to freshwater fish.

Resistant bacteria use mechanisms such as changing an antibiotic’s target, destroying or modifying the drug, preventing its entry, or even pumping it out of the cell. Several of these mechanisms are well documented, Zhang said, but very few researchers have studied the role of protein lysine acetylation, or Kac, in antibiotic resistance.

Posttranslational modifications, or PTMs, are reversible enzymatic changes made in a protein after its synthesis. Kac modifications are a common type of PTM where an acetyl group can be reversibly added to or removed from lysine residues in a protein. In bacteria, quorum sensing, chemotaxis, metabolism and virulence pathways are known to use Kac modifications, but little was known about their role in antibiotic resistance before this study.

“We discovered a new and complex mechanism of bacterial drug resistance,” Zhang said. “The most exciting aspect is that (Kac modifications) are reversible and dynamic, and bacteria can easily switch their ‘on’ or ‘off’ state to adapt to antibiotic stress instantaneously.”

Using quantitative proteomics, Lin’s group found that  A. hydrophila that is resistant to the antibiotic oxytetracycline has less Aha1 — an outer membrane protein that belongs to the Gram-negative porin family. Three lysine residues located at the extracellular pore vestibule and their acetylation status regulate antibiotic uptake by changing Aha1’s pore size. The Kac status and consequent pore size of Aha1 affects multidrug resistance to the tetracycline and beta-lactam classes of antibiotics.

Most studies of antibiotic resistance focus on identifying the gene or the protein, Zhang said, but posttranslational modifications add another layer of complexity. The Lin group will continue their research to better understand how the acetylation state of Aha1 is regulated and use what they call “special Kac-sites” on Aha1 to develop better diagnostic and therapeutic tools in future.

“Great attention should be paid to the effect of posttranslational modification on antibiotic resistance,” Zhang said. “These modifications may be a new target for the development of drugs.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Sneha Das

Sneha Das is a research development manager at the University of Illinois at Urbana–Champaign and an ASBMB Today volunteer contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 15, 2024

Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.