͵͵

News

Nanoplastics may help set the stage for Parkinson’s risk

Vicki Contie
By Vicki Contie
Jan. 28, 2024

Parkinson’s disease and related dementias have been on the rise worldwide. These disorders are marked by an abnormal buildup of the protein alpha-synuclein in the brain. The factors leading to this buildup of alpha-synuclein are unknown. Research points to a potential role for environmental factors.

Small bits of plastic are widely found throughout the environment, including food and water supplies. Microplastics are plastic particles smaller than 5 mm in diameter—tinier than a sesame seed; nanoplastics are less than 1 μm, too small to be seen by the human eye. At least one previous study found that particles of polystyrene and other plastics can be detected in the blood of most healthy adults. Single-use polystyrene products—like plastic cups, utensils, and foam packing—are widespread environmental waste. But despite their ubiquity, the potential health consequences of these plastics are only beginning to be studied and understood.

Previous studies found evidence that alpha-synuclein’s activities can be affected by polystyrene and other particles. An international research team led by Dr. Andrew B. West of Duke University decided to take a closer look at the effects that nanoplastics might have on nerve cells and the brain. The scientists explored interactions between alpha-synuclein and polystyrene nanoplastics both in lab dishes and in mice. Results were reported on November 17, 2023, in Science Advances.

The researchers first showed that human alpha-synuclein binds readily to polystyrene nanoplastics in a test tube. This binding led to the formation of abnormal alpha-synuclein structures called fibrils, a hallmark of Parkinson’s disease and related dementias.

The scientists next examined how alpha-synuclein fibrils and nanoplastics behave with cultured brain cells, or neurons. They found that both the fibrils and the plastics can enter neurons via endocytosis, in which the cell’s outer membrane engulfs targeted items. Once inside, both the fibrils and the plastics entered the cell’s lysosomes, membrane-bound organelles that serve as cellular garbage disposals. The researchers found that nanoplastics disrupted lysosome activities, slowing the breakdown of harmful clumps of alpha-synuclein.

The team next looked at how polystyrene nanoplastics and alpha-synuclein interact in the mouse brain. They found that the nanoplastics and alpha-synuclein fibrils also interacted there, which increased the spread of abnormalities across interconnected brain regions. Neurons in the brain’s substantia nigra region were especially affected. This brain region helps to control movement and is damaged in Parkinson’s disease and related dementias.

Taken together, these findings point to previously unrecognized interactions that could contribute to Parkinson’s disease risk and progression. Further research is needed to study how these interactions affect disease development and whether other types of plastics have similar effects.

“Numerous lines of data suggest environmental factors might play a prominent role in Parkinson’s disease, but such factors have for the most part not been identified,” West explains. “Our study suggests that the emergence of micro and nanoplastics in the environment might represent a new toxin challenge with respect to Parkinson’s disease risk and progression.”

This story originally appeared on the  website. Read the.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Vicki Contie
Vicki Contie

Vicki Contie is a science writer at the National Institutes of Health. This story was originally written for the online publication.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Transforming learning through innovation and collaboration
Award

Transforming learning through innovation and collaboration

Nov. 22, 2024

Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.