͵͵

News

Drugs of the future will be easier and faster to make, thanks to mRNA

After researchers work out a few remaining kinks
Li Li
By Li Li
Feb. 25, 2024

Vaccines have been reliably and affordably protecting people from diseases worldwide . Until the COVID-19 pandemic, however, vaccine development was still a long and idiosyncratic process. Traditionally, researchers had to tailor manufacturing processes and facilities for each vaccine candidate, and the scientific knowledge gained from one vaccine was often not directly transferable to another.

But the COVID-19 mRNA vaccines brought a new approach to vaccine development that has far-reaching implications for how researchers make drugs to treat many other diseases.

, and at UMass Chan Medical School focuses on developing better ways to use mRNA as a drug. Although there are for what researchers can use mRNA to treat, some important limitations remain. Better understanding how mRNA-based drugs interact with the immune system and how they are degraded in human cells can help lead to safe, durable and effective treatments for a wide range of diseases.

Some basics of mRNA drugs

Messenger RNA, or mRNA, is made of four building blocks denoted by the letters A, C, G and U. The sequence of letters in an mRNA molecule conveys genetic information that directs how a protein is made.

An mRNA drug comprises two essential components: mRNA molecules, which code for desired proteins, and the lipid molecules – such as phospholipids and cholesterol – that encapsulate them. These , are tiny spheres that protect mRNA from degradation and facilitate its delivery into target cells.

Once inside cells, mRNA molecules instruct the cell’s machinery to produce the target protein required for a desired therapeutic effect. For example, the mRNA in the Pfizer-BioNTech and Moderna directs cells to produce a harmless version of the virus’ spike protein that trains the immune system to recognize and better prepare for potential infection.

The science behind COVID-19 mRNA vaccines has been decades in the making.

From a drug development perspective, mRNA drugs offer significant advantages over traditional drugs because they are . Hundreds of pounds of mRNA can be made from readily available DNA templates, such that producing a different mRNA drug is as simple as changing the corresponding DNA templates.

More importantly, different mRNA drugs produced by the same set of methods will have similar properties. They will be delivered to the same tissues, trigger similar levels of immune responses and degrade in similar ways. This predictability significantly reduces the development risks and financial costs of developing mRNA drugs.

In addition to being easy to program, mRNA drugs have several other unique properties. For example, just like the mRNAs your body naturally produces, therapeutic mRNAs have a short half-life in cells: . As a result, current mRNA technology is ideal for treatments that aren’t meant to last long in the body.

This is why vaccines are popular candidates for mRNA technology: They provide long-term protection against disease after brief exposure to the drug with few side effects. There are currently , not including vaccines for COVID-19, in clinical trials.

Self vs. nonself

Another critical feature of mRNA drugs is their intrinsic ability to stimulate the immune system. This may sound paradoxical — after all, your cells already contain large amounts of mRNAs. Why would other mRNAs activate your immune system? How does your immune system distinguish between self and nonself mRNAs?

The first reason involves location. Therapeutic mRNAs enter cells using endosomes — sacs made of the cell’s membrane that take in materials from the cell’s environment. Your immune system can detect mRNA in endosomes because this is usually a sign of an RNA virus infection — cellular mRNAs normally don’t enter endosomes. When your immune system labels therapeutic mRNAs as viral material, it triggers that can lead to severe side effects.

Endocytosis is the process by which material outside the cell, such as mRNA molecules, is engulfed within the cell.
alfa md/iStock
Endocytosis is the process by which material outside the cell, such as mRNA molecules, is engulfed within the cell.

One solution to this problem is to modify mRNA’s building blocks — specifically, changing the U, or uridine, to its chemical cousins, and . This subtle chemical change prevents the unwanted immune response while allowing the therapeutic mRNA to . The was awarded to the scientists who made this breakthrough discovery. Both the Pfizer-BioNTech and Moderna use this technique.

The second source of unwanted immune response is impurities from mRNA production. To prepare mRNA from a DNA template, scientists use a protein called that tends to make a small amount of side product called . Unlike mRNA, which is single-stranded, double-stranded RNA has two chains that form a double helix. RNA viruses also form double-stranded RNA when they replicate, and exposing cells to double-stranded RNA can lead to a strong immune response.

Removing double-stranded RNA is challenging, especially at the industrial scale. Fortuitously, for mRNA vaccines, the residual amount of double-stranded RNA can stimulate the immune system to . However, for applications other than vaccines, a cleaner RNA product is necessary to reduce side effects.

Moving beyond vaccines

Although mRNA has the potential to transform drug development for various medical purposes, careful consideration is required to identify targets that align with the technology’s strengths.

For example, because there is currently a limit to how long mRNA can last in the body, treatments that need a protein to be present for only a short period of time to achieve a lasting therapeutic effect are ideal. One promising example in development is using mRNA that encodes CRISPR-Cas9 gene-editing proteins to knock out genes that cause specific diseases.

Researchers are exploring this strategy to develop a single-dose treatment for , a rare genetic disease caused by the accumulation of misfolded proteins in the heart and nerves. This disease is an ideal target for mRNA-based CRISPR gene therapy because the target protein is produced by the liver. Because most drugs pass through the liver, this makes it easier to deliver CRISPR-Cas9 mRNA to its target. In the next few years, a new generation of more precise will enter clinical trials.

Because the virus that causes COVID-19 (gold) and other RNA viruses enter cells through endosomes, mRNA drug impurities can elicit similar immune responses.
,
Because the virus that causes COVID-19 (gold) and other RNA viruses enter cells through endosomes, mRNA drug impurities can elicit similar immune responses.

For treatments that need a specific protein to be present in the body for long periods of time or need to prompt little to no immune reaction, further advancements in mRNA technology are necessary to extend mRNA’s half-life and eliminate immune-triggering contaminants. Notable new developments in these areas include using to optimize mRNA sequences in ways that enhance their stability and that introduce fewer side products that may cause an immune response.

Further advancements have the potential to enable a new generation of safe, durable and effective mRNA therapeutics for applications beyond vaccines.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Li Li
Li Li

Li Li is an assistant professor of biomedical sciences at the University of Massachusetts Chan Medical School.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Beneficial gut microbe has surprising metabolic capabilities
News

Beneficial gut microbe has surprising metabolic capabilities

Nov. 23, 2024

WashU researchers’ mouse study of therapeutic food for malnourished children shows a new gut bacterial enzyme's wide-ranging functions.

Transforming learning through innovation and collaboration
Award

Transforming learning through innovation and collaboration

Nov. 22, 2024

Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From the journals: JBC
Journal News

From the journals: JBC

Nov. 22, 2024

Prefoldins participate in parasite pathology. Protein modifications coordinate in DNA repair. Nucleotide analog blocks viral RNA polymerases. Read about recent papers in the JBC on these topics.

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.