͵ÅÄ͵¿ú

Journal News

Small protein plays a big role in viral battles

Anna Crysler
April 30, 2024

Extracellular vesicles, or EVs, play an important role in communication among cells. Almost all cells can release EVs, which carry content that varies according to the cell type. In response to viruses, immune cells will release EVs containing information that can help the body fight viral replication and infection. But what happens when a complex pathogen hijacks this system?

HIV accessory protein negative regulatory factor
Boghog/Wikimedia Commons
The HIV accessory protein negative regulatory factor, illustrated here, allows easier viral replication and spread in host cells.

Luis daSilva’s research group at the University of São Paulo in Ribeirão Preto studies the endomembrane system of cells with particular interest in the molecular mechanisms of human immunodeficiency virus, or HIV. Viruses can take advantage of this system and impair the immune system’s ability to prevent infection. Researchers have thoroughly studied and characterized HIV’s specific proteins, and they recognize HIV accessory proteins as important virulence factors for HIV-1 pathogenesis.

In in ͵ÅÄ͵¿ú and Cellular Proteomics, the daSilva group writes about their work studying the HIV accessory protein negative regulatory factor, or Nef, in the context of EVs. Nef allows easier viral replication and spread in host cells, and it also modifies the host’s EVs. The authors investigated the impact of this manipulation by Nef through a proteomic analysis of EVs derived from lymphocytes known as T cells.

Mara Elisama da Silva Januário is the first author of the paper. “Our study unveils the influence of Nef on the protein content of EVs released from T lymphocytes, cells that play a major role in the body’s defense,” she said. “Our recent findings highlight Nef as a global modulator of EV proteome.”

Specifically, Nef downregulates proteins in EVs that are important in the body’s antiviral response to HIV-1, including interferon-induced transmembrane proteins, or IFITMs. When IFITMs are reduced in EVs, key antiviral activities are mitigated. These proteins are among several whose expression is disrupted by Nef in HIV-1 infection. 

The researchers found that Nef could modify the levels of more than 35% of the proteins identified in EVs, and among the decreased proteins were three members of the IFITM family. These proteins are pivotal in the body’s antiviral response against viruses including Zika, dengue, influenza and HIV. 

“By decoding these intricate cellular dialogues, our work contributes a small but significant piece to the broader narrative of scientific discovery surrounding HIV-1 infection, offering potential avenues for advancements in medical interventions,” da Silva Januário said.

Unraveling the biological significance of altered proteins in EVs in relation to viral infection and replication are important next steps, she said. “We anticipate that further exploration in this direction will provide valuable insights for the field, shedding light on the intricate processes influenced by Nef and contributing to a deeper understanding of the broader implications for viral dynamics.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Anna Crysler

Anna Crysler holds a B.A. in biochemistry from Albion College and is a is a Ph.D. student in bioengineering at the University of Pennsylvania. She is an ASBMB Today volunteer contributor.

Related articles

From the journals: MCP
Meric Ozturk
From the journals: MCP
Vanshika Patel
From the journals: MCP
Krishnakoli Adhikary
From the Journals: JBC
Ken Farabaugh
From the journals: MCP
Ankita Arora

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Sweet secrets of sperm glycosylation
Journal News

Sweet secrets of sperm glycosylation

March 12, 2025

Scientists from Utrecht University uncover similar glycosylation patterns in sperm from bulls, boars and humans, distinct from those found in blood across species. These findings may improve IVF and farming techniques.

From the Journals: JLR
Journal News

From the Journals: JLR

March 11, 2025

Promising therapeutic candidate for steatosis. Unique lipid profiles in glycogen storage disease. Microglial lactic acid mediates neuroinflammation. Read about these recent papers.

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Journal News

From the Journals: MCP

March 4, 2025

Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
In-person Conference

Exploring life’s blueprint: Gene expression in development and evolution

March 3, 2025

Meet Julia Zeitlinger and David Arnosti — two co-chairs of the ASBMB’s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 27, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in ͵ÅÄ͵¿ú & Cellular Proteomics.