Seeking to cure a coronavirus fatal to cats
All of us have witnessed the impact of the caused by the SARS-CoV-2 that claimed more than 6 million lives worldwide. The coronavirus family is made up of RNA viruses that infect many mammals and birds. In humans, outcomes can range from the common cold to fatal .
Like humans, cats can be infected by coronaviruses. Most cats are exposed as kittens to the feline alphacoronavirus, or FCoV. One found that 40% of domestic cats in the United Kingdom had antibodies for FCoV, suggesting prior infection. Most FCoV infections are asymptomatic or cause mild disease in the gastrointestinal tract. However, in 5% of cases, the virus spreads and results in a fatal disease called , or FIP. Experts believe that the gastrointestinal coronavirus strain can mutate into the more that causes FIP.
, an assistant professor at the Western University of Health Sciences in California studies infectious diseases caused by RNA viruses.
“FIP is a devastating disease that affects cats worldwide,” Mir said, “and currently, there are no effective treatments available for this condition.”
A coronavirus enters a host cell and multiplies there before exiting to infect new cells. Before the virus exits, it makes multiple copies of its RNA and packages it into its nucleocapsid, an outer shell that protects the viral RNA outside the host.
Mir’s group found that a novel compound called K31 targets the nucleocapsid protein of FCoV and stops it from multiplying. In cell culture models, the virus was undetectable 24 hours after treatment with a single dose of K31. The researchers reported this discovery in a published in the Journal of Biological Chemistry.
How does K31 inhibit the virus at the molecular level? When nucleocapsids are packaged with viral RNA, they form ribonucleocapsids, which coronaviruses rely on to make more copies of the viral RNA. K31 disrupts the structural integrity of these ribonucleocapsids, and this has a catastrophic effect on the virus within the host.
“Cell culture studies are useful for the initial screening of potential compounds, and this study provides a promising starting point,” Mir said. “The identification of K31 is an exciting development, but more research is needed to evaluate its effectiveness and safety in living animals.”
Mir’s group previously found that K31 inhibits the and a new world hantavirus that causes in humans. Initial cell culture studies suggest that K31 is well tolerated by host cells and might be developed into a broad-spectrum antiviral as well as an anti-coronavirus drug.
Previous has focused on targets such as RNA-dependent RNA polymerase, spike protein, and envelope protein, Mir said, but this study shows the nucleocapsid is also a druggable target.
FIP kills worldwide. According to Mir, targeted therapies with compounds like K31 could soon be an effective treatment with minimal side effects.
“It is exciting to see that our research project has identified a novel molecule that has potential for further development as an antiviral therapy,” Mir said. “It offers hope to cat owners.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Guiding grocery carts to shape healthy habits
Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Quantifying how proteins in microbe and host interact
“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.
Leading the charge for gender equity
Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.
CRISPR gene editing: Moving closer to home
With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.
Finding a missing piece for neurodegenerative disease research
Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.
From the journals: JLR
Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.