͵͵

News

Engineering cells to broadcast their behavior can help scientists study their inner workings

Scott Coyle
By Scott Coyle
July 20, 2024

Waves are . Whether it’s the rise and fall of ocean tides or the swinging of a clock’s pendulum, the predictable rhythms of waves create a signal that is easy to track and distinguish from other types of signals.

Electronic devices use radio waves to send and receive data, like your laptop and Wi-Fi router or cellphone and cell tower. Similarly, scientists can use a different type of wave to transmit a different type of data: signals from the invisible processes and dynamics underlying how cells make decisions.

I am a , and my developed a technology that traveling through a human cell to provide a window into the hidden activities that power cells when they’re healthy and harm cells when they go haywire.

Animated diagram depicting a signal wave (smooth hills and valleys), AM waves (more waves fit into the shape of hills and valleys) and FM waves (clusters of waves that spread apart slightly at the valleys of the signal)
Waves can be modulated to carry different types of information, such as FM and AM radio.

Waves are a powerful engineering tool

The oscillating behavior of waves is one reason they’re powerful patterns in engineering.

For example, controlled and predictable changes to wave oscillations can be used to encode data, such as voice or video information. In the case of is assigned a unique electromagnetic wave that oscillates at its own frequency. These are the numbers you see on the radio dial.

Scientists can extend this strategy to living cells. My team used to turn a cell into a microscopic radio station, broadcasting data about its activity in real time to study its behavior.

Animation of cyan and mangenta waves forming a spiral
,
Bacterial proteins MinD (cyan) and MinE (magenta) can self-organize into spiral patterns.

Turning cells into radio stations

Studying the inside of cells requires a kind of wave that can specifically connect to and interact with the machinery and components of a cell.

While electronic devices are built from wires and transistors, cells are built from and controlled by a diverse collection of chemical building blocks . Proteins perform an array of functions within the cell, from extracting energy from sugar to deciding whether the cell should grow.

Protein waves are generally rare in nature, but some bacteria naturally generate waves of two proteins called – typically referred to together as MinDE – to help them divide. My team discovered that putting MinDE into human cells causes the proteins to reorganize themselves into a stunning array of .

On their own, MinDE protein waves do not interact with other proteins in human cells. However, we found that MinDE could be to react to the activity of specific human proteins responsible for making decisions about whether to grow, send signals to neighboring cells, move around and divide.

The protein dynamics driving these cellular functions are typically difficult to detect and study in living cells because the activity of proteins is generally invisible to even high-power microscopes. The disruption of these protein patterns cancers and developmental disorders.

Left: population of hundreds of human cells displaying protein oscillations. Right: decoded cell state data from each individual cell within the population, color-coded by activity
Scott Coyle and Chih-Chia Chang
Putting MinDE into human cells produces visual patterns that can signal changes to protein activity in the cell.

We engineered connections between MinDE protein waves and the activity of proteins responsible for key cellular processes. Now, the activity of these proteins trigger changes in the frequency or amplitude of the protein wave, just like an AM/FM radio. Using microscopes, we can detect and record the unique signals individual cells are broadcasting and then decode them to recover the dynamics of these cellular processes.

We have only begun to scratch the surface of how scientists can use protein waves to study cells. If the history of waves in technology is any indicator, their potential is vast.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Scott Coyle
Scott Coyle

Scott Coyle is an assistant professor of biochemistry at the University of Wisconsin–Madison.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 15, 2024

Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.