͵͵

Journal News

Starved to death: Can dietary methionine combat cancer?

Nicole Lynn
July 27, 2021

The organic compounds that come together to form proteins are called . The human body uses amino acids as sources of energy for functions such as homeostasis, growth, and repair. While the body can produce some amino acids (known as nonessential), others are strictly obtained through food (known as essential).

The essential amino acid , or Met, is critical for genetic regulation, protein production, cell metabolism and DNA repair. Unlike noncancerous cells, most cancer cells cannot recycle Met efficiently; instead, cancer cells rely on a continuous supply of methionine from external sources for growth. This vulnerability is known as Met dependence, or Met stress sensitivity.

Researchers do not know much yet about the mechanisms behind Met dependence in cancer; however, a published in the Journal of Lipid Research has brought us closer to understanding the role of Met dependence in cancer cell lipid metabolism. of the University of California, Irvine, and collaborators at the and used Met-dependent and Met-independent breast cancer cell lines to characterize the lipid changes that occur in response to Met-dependent stress.

Kaiser Group, University of California, Irvine
This image shows cancer cells (red) starved of methionine. The stress of this deficiency results in accumulation of lipid droplets (yellow) in the cell.

In the cell, diverse make up the cellular membrane and aid in signaling and transport; lipids are also important for nutrient and energy storage. While lipid metabolism is studied widely in relationship to heart disease, researchers know little about lipid metabolism in cancer.

“In cancers, specifically in breast cancer, there has always been a connection to lipid metabolism,” Kaiser said. “We are very interested in understanding how these changes in lipids can affect cancer cells and how they can translate into feasible drug targets.”

Kaiser and colleagues fed cancer cells Met-deficient media to induce stress and then used high-performance liquid chromatography, genetic analysis, and cell microscopy to characterize the changes that occurred in lipids. The researchers found that lipid remodeling and abundance are affected directly by Met-deprivation stress in cancer cells.

Compared to the Met-independent cells (which do not require externally provided Met), the researchers saw an accumulation of lipid droplets, a decrease in lipid synthesis, and a global decrease in all lipid types (except triglycerides; these underwent remodeling), in the Met-dependent cancer cells (which require a continuous external supply of Met). These changes suggest Met stress may affect the , or ER, an organelle in the cell responsible for many metabolic processes, including lipid synthesis.

“A lot of proteins are folded in the ER,” Kaiser said. “This can lead to a stress response because protein folding becomes impacted in the ER as a consequence of the changes occurring to the lipids.”

These findings support a previous in which reduced dietary Met helped shrink tumors in rats when used in conjunction with radiation or chemotherapeutics.

Kaiser and his colleagues seek to understand the molecular mechanisms involved in cancer Met dependence. His lab is also interested in the relationship between Met dependence and cell cycle regulation. These studies could increase knowledge of the unique metabolic needs of cancer cells and lead to better therapies.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Nicole Lynn

Nicole Lynn holds a Ph.D. from UCLA and is an ASBMB Today volunteer contributor.

Related articles

From the journals: March 2019
John Arnst, Courtney Chandler, Isha Dey & Catherine Goodman
From the journals: August 2018
John Arnst, Sasha Mushegian, Angela Hopp & Laurel Oldach
From the journals: JBC
Emily Ulrich
From the journals: JLR
Carmen Morcelle

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 15, 2024

Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.