͵ÅÄ͵¿ú

News

Helping cells become better protein factories

New technique could improve gene therapies and other treatments
Daniel N. Hebert Lila Gierasch
By Daniel N. Hebert and Lila Gierasch
Aug. 21, 2022

The cells in your body are . Each of your organs has cells with very different functions. For example, liver cells are top-notch secretors, as their job requires them to make and export many of the proteins in your blood. By contrast, muscle cells are tasked with facilitating the contractions that allow you to move.

The fact that cells are so specialized has implications for , a way to treat genetic diseases by correcting the source of the error in a patient’s DNA. Health providers use a harmless to carry a corrective gene into a patient’s cells, where the gene then directs the cell to produce the proteins necessary to treat the disease. Muscle cells are a common target because gene therapies are more accessible than introduction into the body by other routes. But muscle cells may not produce the desired protein as efficiently as needed if the job the gene instructs it to do is very different from the one it specializes in.

We are and who study how healthy proteins are produced and maintained in cells. This field is called . Our details a way to make muscle cells behave more like liver cells by changing protein regulation networks, enhancing their ability to respond to gene therapy and treat genetic diseases.

Gene therapy involves replacing a defective gene with a functioning one that can direct cells to produce missing or dysfunctional proteins.

Boosting protein factories

One disease for which gene therapy has great potential is , a condition in which liver cells are unable to make adequate amounts of the protein AAT. It results in a breakdown of lung tissue that can cause , including the development of severe lung diseases such as chronic obstructive pulmonary disease (COPD) or emphysema.

Patients are usually treated by . But this requires patients to either make regular trips to the hospital or keep expensive equipment at home for the rest of their lives. Replacing the faulty gene that caused their AAT shortage in the first place could be a boon for patients. Current gene therapies inject the AAT-producing gene into muscle. One of our colleagues, , developed a way to use a harmless version of an adeno-associated virus as a vehicle to deliver AAT gene therapies into the body via injection, allowing for over several years.

Lung damage from alpha-1 antitrypsin deficiency can lead to emphysema.
,
Lung damage from alpha-1 antitrypsin deficiency can lead to emphysema.

But muscle cells aren’t very good at producing the AAT proteins the gene instructs them to make. Flotte and his team found that AAT levels one to five years after gene therapy were of the optimal concentration for therapeutic effect.

We wanted to find a way to turn muscle cells into better protein factories, like liver cells. We tested a number of different molecules on mice muscle cells to determine if they would boost AAT secretion. We found that adding a molecule called , helps muscle cells make AAT at a production level more like that of liver cells. It works because SAHA is a with the ability to boost the cell’s protein output.

Down the road, we believe that adding SAHA or similar proteostasis regulators to gene therapies could help increase the effectiveness of these treatments for many genetic diseases.

Beyond gene therapy

Our findings have implications beyond just gene therapies. The effectiveness of , for example, is also affected by how well each cell produces a particular type of protein. Because most mRNA vaccines are given through an injection to the muscle, they may also face the same limitations as gene therapies and produce a lower-than-desirable immune response. Increasing the protein production of muscle cells could potentially improve vaccine immunity.

Additionally, many drugs created by the biotech industry called that are derived from natural sources rely heavily on a given cell’s . But many of these drugs use . Adding a protein homeostasis enhancer to the cell could optimize protein yield and increase the effectiveness of the drug.

Protein homeostasis is a burgeoning field that goes beyond drug development. Many like Alzheimer’s and Parkinson’s are linked to abnormal protein regulation. The deterioration of a cell’s ability to manage protein production and use over time may contribute to age-related diseases. Further research on ways to improve the cellular machinery behind protein homeostasis could help delay aging and open many new doors for treating a wide range of diseases.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Daniel N. Hebert
Daniel N. Hebert

Daniel N. Hebert is a professor of biochemistry and molecular biology at UMass Amherst.

Lila Gierasch
Lila Gierasch

Lila Gierasch is distinguished research professor at the University of Massachusetts Amherst, where she worked side-by-side with Dan Hebert after helping to recruit him in 1997. She knew Dan before this and knew that he would bring great science to UMass. He was a close friend and collaborator through their 27 years together at UMass.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Sweet secrets of sperm glycosylation
Journal News

Sweet secrets of sperm glycosylation

March 12, 2025

Scientists from Utrecht University uncover similar glycosylation patterns in sperm from bulls, boars and humans, distinct from those found in blood across species. These findings may improve IVF and farming techniques.

From the Journals: JLR
Journal News

From the Journals: JLR

March 11, 2025

Promising therapeutic candidate for steatosis. Unique lipid profiles in glycogen storage disease. Microglial lactic acid mediates neuroinflammation. Read about these recent papers.

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Journal News

From the Journals: MCP

March 4, 2025

Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
In-person Conference

Exploring life’s blueprint: Gene expression in development and evolution

March 3, 2025

Meet Julia Zeitlinger and David Arnosti — two co-chairs of the ASBMB’s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 27, 2025

Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in ͵ÅÄ͵¿ú & Cellular Proteomics.