͵͵

Lipid News

The many roles of CPTPs

Rhoderick E. Brown
By Rhoderick E. Brown
Dec. 1, 2018

Ceramide-1-phosphate transfer proteins, or CPTPs, about five years ago. Ceramide-1-phosphate, or C1P, is a sphingolipid consisting of nonpolar ceramide connected to a polar anionic phosphomonoester headgroup. including induction of cell proliferation, stem cell mobilization, macrophage migration and activation of IVA phospholipase A2 for eicosanoid production. Prior to the discovery , insights into C1P intracellular transport were sparse.

Human CPTP first emerged from in silico annotative predictions of the Human Genome Database; an ortholog found in plants and capable of regulating accelerated cell death, , had been identified a decade earlier with sphingolipid transfer ability. Recent structure–function studies of CPTP and ACD11 reveal global folds highly similar to protein, a two-layer, all-alpha-helical fold for binding complex sphingolipids in a sandwichlike fashion. C1P specificity originates from a few key residues in the sphingolipid headgroup recognition center which connects to a hydrophobic pocket that of the ceramide moiety. A surprising aspect of CPTP is its complete lack of structural homology with ceramide transfer protein. CPTP/16:0-C1P complexIn this crystal structure of the CPTP/16:0-C1P complex, a surface-located cationic residue triad (R60, R106, R110) provides selectivity for the phosphate headgroup of C1P. D56 and H150 interact with the ceramide amide linkage to provide sphingolipid selectivity. The C1P hydrocarbon chains are ensheathed in an interior hydrophobic pocket.Protein Data Bank: 4K84

Regulation

Potential cellular mechanisms for regulation of CPTPs . C1P intermembrane transfer rates by ACD11 and CPTP increase in the presence of phosphatidylserine, or PS. Other anionic phosphoglycerides, such as phosphatidic acid or phosphatidylglycerol, have the opposite effect of PS and depress C1P transfer rates.

The evidence suggests that PS increases membrane partitioning in a way that may either optimize protein orientation for C1P uptake during initial membrane contact or facilitate protein release from membranes after C1P acquisition. To explain how PS embedded in the membrane could enhance and facilitate a favorably oriented interaction by ACD11 or CPTP, the existence of a PS headgroup-specific site on the surface of ACD11/CPTP near the C1P binding site has been hypothesized. Still, the mechanistic details defining exactly how C1P transfer is sped up are in need of clarification.

In any case, , such as the plasma membrane and trans-Golgi network, seem to be targeted hot spots for ACD11 and CPTP action in cells. A regulatory role for certain phosphoinositides also recently has been reported by our lab. The recent findings support earlier showing that human CPTP is present in the cytosol but targets to distinct cellular regions.

Roles

CPTP downregulation or expression of CPTP point mutants with ablated C1P binding sites affects cells in two major ways: first, C1P levels increase in subcellular fractions enriched in trans-Golgi but decrease in fractions enriched in plasma membranes, and second, arachidonic acid and . The findings are consistent with CPTP acting as a C1P sensor and mediator of C1P transport from the trans-Golgi production site to the plasma membrane.

When CPTP is downregulated, the accumulated C1P in the trans-Golgi membranes of IVA phospholipase A2 via its C1P-specific binding site. The ensuing arachidonic acid release of pro-inflammatory eicosanoids. In our lab, CPTP knockdown has been found to upregulate IVA cPLA2 transcript.

Recently, have begun emerging for CPTP. Patients with severe acute pancreatitis who exhibit downregulated expression of proteins needed for viable tight junctions in intestinal mucosal epithelial cells also have lowered CPTP and elevated IVA cPLA2 expression. Thus, proper CPTP expression may protect tight junction proteins and intestinal mucosa from inflammatory damage linked to IVA cPLA2.

In , autophagy induction and inflammasome assembly and activation have been linked to CPTP expression. WT-CPTP overexpression protects against starvation-induced autophagy. CPTP downregulation or expression of C1P binding-site point mutants triggers an eight- to tenfold increase in autophagosomes, organelles that degrade nonessential cell components and delay cell death in response to stressful events. CPTP depletion helps increase formation of nascent membranes needed for autophagosome assembly by a mechanism that includes increased ATG9A-vesicle release from the Golgi. This finding is consistent with the hypervesiculation and disruption of Golgi cisternae stacks by CPTP knockdown.

In macrophagelike cells, CPTP depletion through an autophagy-dependent inflammasome-mediated pathway. Elevation of intracellular C1P by exogenous C1P treatment rather than by CPTP depletion also induces autophagy and IL-1-beta release.

The new findings provide mechanistic insights that could help decipher disease-related microarray analyses involving previously reported CPTP expression changes. For example, CPTP downregulation in age-related macular degeneration, and in a genetic disorder that causes intellectual disability, delayed growth and other symptoms.

Together, these findings are beginning to shed light on mechanisms that cells can use to regulate CPTPs in humans and plants, while also revealing the emerging translational medical importance of these proteins in human health and disease.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Rhoderick E. Brown
Rhoderick E. Brown

Rhoderick E. Brown is the I.J. Holton distinguished professor at the University of Minnesota-Hormel Institute.

Related articles

Cholesterol lures in coronavirus
Marissa Locke Rottinghaus
A surprising modification lowers the lipid binding affinity of a membrane trafficking protein
Jefferson Knight, Colin T. Shearn & Cisloynny Beauchamp–Pérez
Phospholipids and innate immunity
Valerie B. O’Donnell

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Transforming learning through innovation and collaboration
Award

Transforming learning through innovation and collaboration

Nov. 22, 2024

Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.