New kids on the signaling block
Signal relay in eukaryotes enables proper response to chemical or physical signals received by the cell. We now understand how many of the canonical components of signaling pathways exert their functions, including the mode of activation of many kinases and the relationships among receptors, scaffolds and downstream effectors. This understanding has been key to the development of therapeutics targeting signaling components. Yet, from receptors to enzymes such as kinases, phosphatases, ubiquitin ligases and deubiquitinases, the signaling machinery still holds many mysteries.
In this session, we will focus on atypical signaling mechanisms, from the discovery of new catalysis within the kinome superfamily and noncanonical ubiquitination to the role of metals such as copper in signaling. We also discuss the emergence of pseudoenzymes: These allosteric signaling scaffolds are defined by their structural and sequence homology to canonical enzymes such as kinases and phosphatases, but they lack catalytic activity and remain relatively unexplored biologically and as potential drug targets.
We also will discuss how improvements in phosphoproteomics, genetic screens, and affinity and proximity proteomics permit us to globally assess specific aspects of signal transduction and shine new lights on poorly characterized enzymes, scaffolds and substrates.
Keywords: signal transduction, phosphorylation, ubiquitination, post-translational modification, pseudoenzymes, mass spectrometry, CRISPR screens, structural biology, interaction mapping
Who should attend: everyone who likes taking the road less traveled and those interested in good detective stories
Theme song: “Halo” by Beyoncé
This session is powered by ligands and receptors.
Talks
- CRISPR sensors for signaling — Stéphane Angers, University of Toronto
- Tracing copper utilization by kinase signal transduction pathways: Implications for cancer cell processes — Donita Brady, University of Pennsylvania
- How do signaling pseudoenzymes work? — Patrick Eyers, University of Liverpool
- Proximity-dependent sensors for signaling — Anne-Claude Gingras, Mount Sinai Hospital
- Proteome-scale amino-acid resolution footprinting of protein-binding sites in the intrinsically disordered regions — Ylva Ivarsson, Uppsala University
- Structural basis for signaling by the HER3 pseudokinase — Natalia Jura, University of California, San Francisco
- Defining pseudoenzymes in glycosylation pathways — Natarajan Kannan, University of Georgia
- Cell signaling by protein tyrosine phosphatases — Hayley Sharpe, Babraham Institute, Cambridge
- Expanding the kinome — Vinnie Tagliabracci, University of Texas Southwestern Medical Center
- Pseudoenzyme classification — Janet Thornton, European ͵͵ Biology Laboratory
- A high-dimensional map of phosphorylation-dependent signaling in budding yeast — Judit Villén, University of Washington
- Noncanonical ubiquitination — Satpal Virdee, University of Dundee
Learn more
Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreFeatured jobs
from the
Get the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Guiding grocery carts to shape healthy habits
Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Quantifying how proteins in microbe and host interact
“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.
Leading the charge for gender equity
Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.
CRISPR gene editing: Moving closer to home
With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.
Finding a missing piece for neurodegenerative disease research
Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.
From the journals: JLR
Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.